AD A 094745 ### LEVEL 11! **TECHNICAL REPORT RR-80-4** **OPTICAL CORRELATION SEEKER** Charles R. Christensen Richard L. Hartman Research Directorate US Army Missile Laboratory 5 May 1980 U.S. ARMY MISSILE COMMAND Redstone Arsenal, Alabama 35809 ____ Approved for public release; distribution unlimited. FILE COPY RM 1021, 1 JUL 79 PREVIOUS EDITION IS OBSOLETE 81 2 03 009 ### **DISPOSITION INSTRUCTIONS** DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ### DISCLAIMER THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. ### TRADE NAMES USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | |--|--|--| | , * I | 3. RECIPIENT'S CATALOG NUMBER | | | Technical Report RR-80-4 | | | | 4. TITLE (and Subtitle) | 5. TYPE OF REPORT & PERIOD COVERED | | | OPTICAL CORRELATION SEEKER | | | | | 6. PERFORMING ORG. REPORT NUMBER | | | <u>'</u> | | | | 7. AUTHOR(a) | 8. CONTRACT OR GRANT NUMBER(*) | | | Charles R. Christensen and Richard L. Hartman | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | Commander, US Army Missile Command | , <u>-</u> | | | ATTN: DRSMI-RR | | | | Redstone Arsenal, AL 35898 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | | Commander, US Army Missile Command | 5 May 80 | | | ATTN: DRSMI-RPT | 13. NUMBER OF PAGES | | | Redstone Arsenal AL 35898 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | 14. MONITORING AGENCY NAME & ADDRESS/IT different from Confronting Office) | | | | | Unclassified | | | | 15a, DECLASSIFICATION/DOWNGRADING SCHEDULE | | | 16. DISTRIBUTION STATEMENT (of this Report) | <u> </u> | | | | د | | | Approved for public release; distribution unlimite | . D | | | | | | | | | | | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro | m Report) | | | 17. DISTRIBUTION STATEMENT (of the abeliact where in block 20, it distributes | | | | | | | | | | | | AA AVADA SUSAI AA NOTES | | | | 18. SUPPLEMENTARY NOTES | | | | | | | | | | | | | | | | 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) | ′ | | | Terminal Guidance | | | | Autonomous
Acquisition | | | | nequisition | | | | A standard by black are been | | | | 20. ABSTRACT (Courtisus on reverse side if necessary and identity by block number) | | | | A new concept in seekers has been developed by integrating the sensor with an Optical Data Processor (ODP). The resulting system, in a terminal guidance | | | | submissile configuration, will recognize a tank if there is one in the field | | | | of view, discriminate between friend and foe, and provide guidance signals to | | | | home in on the target. The system will fit in a 150 mm diameter by 20 mm | | | | section, and consume less than one watt of power. The system will have | | | | retargeting and damage assessment capabilities. This new concept is the | | | DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) culmination of a number of years of research in optical data processing at the Missile Command, focusing on three main problems: real time data input, sensitivity to orientation or aspect, and size of the system. The first problem was solved by contractual development of a liquid crystal coherent image modulator, the second problem by the in-house invention of a multiplexed filter, and the third problem with the development of an ODP system which operates with a laser diode. This development opens the door to move ODP from the laboratory into Army application. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) ### CONTENTS | | | Page | |------|------------------------------|------| | ī. | INTRODUCTION | 3 | | II. | CONCEPT | 3 | | III. | COHERENT OPTICAL CORRELATION | 6 | | IV. | CONCLUSIONS | 17 | | | REFERENCES | 19 | | Acces | sion For | ···· | |--------------------|----------------|--------| | NTIS | GRA&I | Y | | DTIC | TAB | | | Unann | ימעטו ∱ר ממעטו | £7.3 | | Justi | fication. | · | | | | | | P | | | | $_{ m D}$ nert r | Thirt Land | | | Avai | loring ty | ាជាក់ន | | | th BrovA | 100 | | Dist | Specia | .L | | | | | | | | | | 17 | | | ### ACKNOWLEDGMENTS Dr. B. D. Guenther, now of ARO, and Mr. J. Upatnieks, ERIM, made major contributions to this effort while working in the Army Missile Laboratory. Mr. D. L. Fuqua, Mr. R. D. McKenzie, Jr., and Dr. J. G. Duthie also made valuable contributions. ### I. INTRODUCTION A "super-smart weapon" which outperforms our smart weapons just going into the field, yet is much cheaper than those current systems? It sounds like the answer to the Army's prayer for a method to cope with a dramatically increasing threat. We think we have demonstrated the key ingredients of such a system, through the marriage of a long-term fundamental effort at the Missile Command, significant industrial developments, and recognition of how this developing technology can pay off for the Army. Through the application of some recent existing developments in optical data processing, we can now propose to build a seeker which recognizes a tank by its image, homes on it, and destroys it. The seeker autonomously detects and locks on the target, provides guidance signals, reacquires if the target is lost, and retargets if necessary. The sensor will fit in a submissile, weigh under a pound, consume less than a watt of power, and possibly even cost under \$100. In this report we will discuss the concept and its applications to set the stage for our interest. The report will also cover the technological advances we have made which make this concept feasible. ### II. CONCEPT The sections below will show how we have built an optical computer which can: - Autonomously acquire a target. - Provide guidance signals. - Discriminate. - Operate against a variety of predetermined targets. - Reacquire a temporarily obscured target. A significant development will also be shown which will allow this to be done in a small inexpensive package. Figure 1 demonstrates the operation of our laboratory computer. The image of the tank model is the desired target. The optical computer located this target in the input scene, and showed its location in the correlator output plane. The optical computer could be used with any imaging sensor, such as radar, mm, or IR. But it has its greatest potential in a direct visible role, and we believe there are important applications in this role. A. REFERENCE B. INPUT SCENE C. CORRELATOR OUTPUT Figure 1. Demonstration of optical correlation. The conceptual seeker takes the form of Figure 2. Figure 2. The optical correlator seeker in a visible mode. This sensor is designed to correlate to a target from the top, as in Figure 3. It will recognize the target at any orientation, and operate over a wide span of distances to the target. It can recognize and discriminate between targets to about the same degree as a human can. Figure 3. The simplest optical correlator seeker works on a top view. Unlike many other "top attack" sensors, the optical correlator does not need to search the field of view, or search the scene against the reference. This allows it the time to select targets of lesser value, or to pull a flyout maneuver to look for targets, as in Figure 4. IF THERE IS NO PRIMARY TARGET IN THE FIELD OF VIEW, ## OCS CAN SWITCH TO SECONDARY TARGETS (E.G., APC'S TRUCKS, ETC., OR ROADS) IT COULD ALSO SWITCH WARHEAD MODES OR, SINCE IT DOES NOT NEED TO FALL TO SEARCH, IT COULD PULL A FLY-OUT MANEUVER AND LOOK AGAIN Figure 4. Alternate targeting mode. The system could also perform some damage assessment, and retarget if possible, as in Figure 5. The high resolution allows us to detect smoke, flames, or debris flying off. One application of our concept would be a guided mortar, such as GAMP. The guided mortar provides the infantry company with tank killing firepower. IF THERE ARE MULTIPLE TARGETS, OCS SELECTS ONE IF ONE IS HIT, OCS WOULD REALIZE IT, AND SWITCH TO OTHER AVAILABLE TARGETS Figure 5. Damage assessment/retargeting. The target probably will be acquired with the human eye, so the visible operation of the optical seeker should be acceptable. The optical computer can be configured to fit within an 81 mm package, and if cheap enough, could be widely distributed. A top attack anti-tank missile is another role. Concepts (FFAST, Tank Breaker) using top attack are now popular, because of the vulnerability of the tank on top. In this concept a shoulder fired missile would pull a preprogrammed maneuver to fly a lofted trajectory, and then home on the top of the target. The ASSAULT BREAKER concept, or Corps Support Weapon System, proposes to disperse submunitions over an area rich in targets. Coupled with long range target acquisition, this system would interdict fighting material on its way to the front. In this role the exceptional computing power of the optical computer comes into its own. This system automatically acquires and locks onto target. It can discriminate between targets of interest. It can search a stored reference target array, and select targets of highest value. It could go after tanks, trucks, buildings, roads, bridges, or whatever is deemed of value. We optimistically expect that a given missile platform could carry more submunitions using this technology, yet at a greatly reduced cost. The higher versatility effectiveness of the optical system means it would be so effective that it would be worth having, even if it didn't work in fog. Inclusion of a few flares in the payload would provide for nighttime operation. In Europe, morning fog can be quite prevalent, and last long enough for tactical use; but an interdiction role may allow early use of the weapon system or waiting a few hours for the right condition. ### III. COHERENT OPTICAL CORRELATION Cross-correlation is a very effective method for recognizing images. The advantages of using optical processing for cross-correlation are due to the large information handling capacity of optical system. A modest system can process scenes having over 10^7 resolution elements. Such a system handles two-dimensional data isotropically and in parallel with the processing time determined by the time required for data input and output. The large capacity of optical storage media can be used to provide rapid access to a large number of reference images. The cross-correlation function is defined as $$R_{fg}(\eta,\xi) = \int_{0}^{\infty} \int_{0}^{\infty} f(x,y)g(x-\eta, y-\xi)dx dy . \qquad (1)$$ In this equation, f(x,y) describes a signal image (the real-time scene), and g(x,y) describes a reference (the desired target). $R_{fg}(\eta,\xi)$ then describes how well the two match, and the location of a target in the scene. This cross-correlation can be calculated through the use of Fourier transforms, $$R_{fg}(\eta,\xi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(p,q)G^{*}(p,q) \exp\left[-12\pi(p\eta+q\xi)\right] dp dq \qquad (2)$$ where the Fourier transform of f(x,y) is defined as $$F(p,q) = J[f(x,y)] = \iint f(x,y) \exp[-i2\pi(px+qy)] dx dy$$, (3) and G^* is the complex conjugate of the Fourier transform of g(x,y). To implement (2) using optical techniques, an optical system such as the one shown in Figure 6 is used. The reference scene g(x,y) is placed in the front focal plane of the lens L1 and illuminated by coherent light; the Fourier transform G(p,q) appears in the back focal plane. As can be seen in Figure 6, a reference beam is used to holographically record G, i.e., the amplitude and phase of G are recorded. The input can now be changed to f(x,y) as shown in Figure 6B. The hologram in the back focal plane of L1 diffracts the product of Fourier transforms FG* along the optical axis of L2. The lens L2 forms the inverse Fourier transform, i.e., $R(n,\xi)$ in its back focal plane. This process was demonstrated in Figure 1. The image of a tank model was used to form the reference filter as illustrated in Figure 1A. This reference filter was matched against the input scene containing the tank as shown in Figure 1B. The correlator input, a spot of light in a dark background, is shown in Figure 1 at the same scale as the input scene. The presence of the correlation spot identifies that the tank in the input scene is the same as the reference and the location of the spot designates the location of the tank in the scene. The small size of the correlation spot indicates the precision with which the tank can be located. A measure of this precision, the half-width at half-height of a trace through the correlation, was 1/12 of the tank width in this example; and the signal/noise limited accuracy was 1/50 of the tank width. Figure 6. The optical correlator. The laboratory correlator used in these experiments has been described previously [1]. A major breakthrough a few years ago was the development of real-time data input through use of a liquid crystal light valve [2,3]. MICOM participated in the funding of this development. The light source is a He-Ne laser operating at 633 nm or a GaAlAs diode injection laser operating at 820 nm. Reference filters are recorded on photographic plates with a He-Ne laser. When correlating with a diode laser source, a scale change of the input image is required to compensate for the change in wavelength from that used in filter recording. ### A. Composite Filter Earlier attempts at correlation guidance were sensitive to angular orientation. Filter multiplexing was tried as a way to solve this problem [4,5]. Several reference filters, each of a different perspective of the vehicle, were recorded at the same spatial location in the Fourier transform plane. The exposure time of each of the N multiplexed filters was T/N, where T is the exposure time for a single reference filter. Since only vehicle recognition and location is required, the correlation functions of the superimposed filters conscide in the output plane. Figure 7 shows a polar plot of the relative correlation peak amplitude for an eight-fold multiplexed filter. Images of the vehicle are displayed around the polar plot in Figure 7 to aid in visualization. Arrows on the graph indicate the orientation used in recording the eight superimposed filters. The single reference filters produced a correlation peak whose amplitude remained above 40% of its maximum over a 50° angular change. The eight-fold multiplexed filter demonstrated similar performance over 360°. This technique has solved the angular orientation problem. A four-fold multiplexed filter demonstrated similar performance but the correlation peak dipped below 40% of the maximum value at two orientations. The choice of different recording positions and adjustment of individual filter exposure levels could make the angular response curve much more uniform. A similar experiment successfully compensated for angle-of-view change in elevation. The technique of multiplexing is expected to work equally well for change of scale to operate over a variety of ranges to the target. ### B. Discrimination Does multiplexing destroy the filter's capacity to discriminate between various objects? A simple test was performed to compare the ability of the filter to discriminate against a different model. The results of this test are shown in Figure 8, where a single TV line through the correlation peak is displayed for the case when the input image was Model A and when the image was Model B. Model B was used to construct the filters. The maximum peak amplitude for the eight-fold multiplex filter was unexpectedly high: one-fourth the amplitude obtained when using a single filter. Linear recording theory predicts that the correlation peak should drop to $1/N^2$ of that of a single filter for single filter contributions, or to 1/N of that of a single filter for simultaneous filter contributions (N is the number Figure 7. Correlation at any Aspect Angle with Multiplex Filter. of superimposed filters). The abnormally large correlation peak amplitude may be the result of nonlinear recording and in-phase amplitude addition of the correlation peaks from individual filters. Our explanation of the origin of the angular insensitivity of the multiplexed filter is purely speculative. The theory of two-dimensional moment invariants [6] may provide an explanation and might be used for the digital generation of this type of filter. ### C. Multichannel Correlator An input image can be correlated against a number of reference filters within one optical system [7]. This can be used to obtain a correlation over a wide range of image angle or size, or input scene. A Figure 8. Target discrimination with the optical correlator. filter array can be addressed by a holographic lens [8,9] or by multiple light sources [10]. The use of a light source array to address a corresponding reference filter array is illustrated in Figure 9. This allows each filter to be sequentially addressed, requiring no more light power or detector sensitivity than a single channel correlator. A search through a hierarchy of targets, e.g., tanks, armored personnel carriers, trucks, etc., can also be performed. A two-channel correlator has demonstrated continuous vehicle tracking [4]. Figure 9. Multichannel optical correlator. ### D. Dicte Laser Sources One of the major barriers to fielded application of optical computers is the use of large, non-rugged gas lasers for the light source. We have solved this problem by designing and demonstrating a correlator which works with room temperature cw diode injection lasers. These lasers typically have an output power of 10 mW at 820 nm wavelength and require approximately 200 ma at 2.5V or 0.5W of input power. The microscopic size and low power consumption of these lasers make them suitable as light sources in a multichannel correlator. A correlator with up to a 5 X 5 element source array addressing a corresponding reference filter array is feasible [10]. Suitable diode laser arrays are available from manufacturers. The IR wavelength and limited coherence of currently available diode lasers make direct holographic recording impossible. However, we have developed an indirect technique for making filters for use in a diode laser correlator. The light source temporal and spatial coherence requirements for coherent optical correlation have been analyzed previously [11, 4]. Relatively low source coherence is required for low resolution input imagery. The maximum spectral width, $\Delta\lambda_{m},$ that will have a negligible effect on the correlation is $$\Delta \lambda_{\rm m} = \frac{\lambda_{\rm O}}{N} \quad , \tag{4}$$ where λ_0 is the light source wavelength and N is the number of resolvable points across the image input to the correlator. For correlation on an entire TV screen input using a diode laser with λ_0 = 820 nm, the maximum spectral bandwidth is 820 nm/512 or 1.6 nm. In practice the temporal coherence requirements are much less than this due to lower input image resolution and due to the lower spatial frequency distribution recorded on the filter. A change, S, in input scale is equivalent to a wavelength change $$S = \frac{\Delta \lambda}{\lambda} \tag{5}$$ therefore, the measured scale change tolerances can be used to determine the spectral width tolerance for the correlator light source. Our earlier work indicated a \pm 8% scale change tolerance for vehicle recognition [4,8], so the light source bandwidth can be 0.16 λ_0 or 130 nm. Diode laser spectral bandwidths are 2 nm or less. The spatial coherence or source size requirements can be determined by measuring the tolerance of the correlation to lateral filter displacement. A filter displacement is equivalent to a source displacement scaled by the ratio of the transform lens and collimating lens focal lengths. In previous experiments [4] using a coherent helium-neon laser source, a \pm 12 μ m filter displacement resulted in no more than a 3 dB decrease in correlation amplitude, indicating that a 24 μ m diameter source would be acceptable. An advantage of using a less spatially coherent source is that the matched filter alignment requirements are reduced [11, 12]. Matched filter correlation using a large spatially noncoherent source has been demonstrated [13]. These considerations indicate that even light emitting diodes, with 30 nm spectral width and 200 μm diameter emitting area, have adequate temporal and spatial coherence for optical matched filter correlation. Light emitting diodes will be evaluated in future work. A comparison between coherent optical matched filter correlation using a helium-neon laser and a diode laser is shown in Figure 10. The photograph of the automobile was used to make a reference filter. This picture was auto-correlated using helium-neon and diode laser sources with approximately 10 mW output power. Traces through the correlation spots obtained with the two sources are shown. The correlation linewidths are the same, as is expected from the preceding discussion of coherence requirements. Figure 10. Performance of the Diode Laser Correlator Identification and tracking of this vehicle as it moves across a scene is demonstrated in Figure 11. The reference filter shown in Figure 10 was cross-correlated with the input scene using a diode laser source. Photographs of the correlator output plane and traces through the correlation spots are shown below the corresponding input images, all to the same scale. The correlation peak half-width at half-height, a measure of tracking accuracy, was about 1/15 of the car's length. Figure 11. Cross correlation vehicle tracking using a diode laser source and the matched filter shown in Figure 10. Packaging of a correlator in a configuration that can be fitted in a small missile was also considered. Two miniature correlators were designed, one a cylindrical package with the image input at the center and the other rectangular with the input at one end. Figure 12 shows a correlator folded into a 100 mm diameter cylindrical package with air spacing between components. The correlator is contained within the upper 2.5 cm section of the cylinder in the side view and the diode laser or light emitting diode array and collimator occupies a portion of the lower section. The input device is an optically addressed liquid crystal light valve similar to those used in laboratory experiments. The correlator output is detected by a solid state CCD detector array with peak sensitivity near the diode laser wavelength. A lens L_1 , is used both as the collimating lens and as the Fourier transform lens. The imaging lens L_2 forms an image on the coherent image forming light modulator. The specifications for this correlator are listed in Table I. Figure 12. A Cylindrical coherent optical correlator. Table 1. Specifications for Cylindrical Correlator. | Correlator | 2.5 cm x 10.0 cm diameter = 200 c | |-------------------|--------------------------------------------------------------| | Collimator | \sim 1/2 of 2.5 cm x 10 cm diameter \simeq 100 cm 300 cm | | Input Image Size | 20 mm x 20 mm | | Input Data Size | at 50 pts/mm, 10^6 pts | | Power Consumption | <1 W for laser diode | | | <1 W for detector array | | | ∿2 W | | Focal Length of L | 160 mm, $f/8$ operation | Note: Above does not include noncoherent imaging optics Figure 13 shows a correlator design contained within a transparent solid. This monolithic construction increases mechanical rigidity and ruggedness and eliminates the possibility of optical surface contamination. If an electronic input coherent light modulator [14] is used, imaging lens L_2 would be eliminated. This correlator is compact enough to fit within an 81 mm mortar projectile. Additional information on this design is presented in Table II. Figure 13. A Monolithic coherent optical correlator. Table 2. Specifications for Monolithic Correlator | Size | $3 \text{ cm} \times 10 \text{ cm} \times 1.5 \text{ cm} = 45 \text{ cm}^3$ | |---------------------|-----------------------------------------------------------------------------| | Input Image Size | 15 x 15 mm | | | at 50 pts/mm, 5 x 10 ⁵ pts | | Power Consumption | <1 W for laser diode | | | <0.1 W for liquid crystal cell | | | ∿l W for detector array | | | 2 W total | | Lens L ₁ | 60 mm focal length, f/4 | ### IV. CONCLUSIONS The developments in the field of optical data processing over the past few years make this a technology ripe for exploitation by the Army. The work described in this report has demonstrated a way of making optical computers practical for missile applications. There will be spin-off to other areas, including navigation and helicopter hover control. As we develop more sophisticated multichannel, multiplex devices, we expect to demonstrate fire and forget guidance for direct fire missiles. ### REFERENCES - J. G. Duthie, J. Upatnieks, C. R. Christensen, and R. D. McKenzie, Jr., "Real-time Optical Correlation with Solid State Sources," <u>Proceedings</u> <u>SPIE</u>, Vol. 232 (1980). - 2. J. Grinberg, A. J. Jacobson, W. Bleha, L. Miller, L. Graas, D. Boswell, and G. Meyer, Opt. Eng. 14, 217-225 (1975). - W. P. Bleha, L. T. Lipton, E. Weiner-Avnear, J. Grinberg, P. G. Reif, D. Casasent, H. B. Brown, and B. V. Markevitch, Opt. Eng. <u>17</u>, 371-384 (1978). - 4. B. D. Guenther, C. R. Christensen, and Juris Upatnieks, IEEE J. Quant. Elec. QE-15, 1348-1362 (1979). - 5. C. F. Hester and D. Casasent, <u>Proceedings SPIE</u>, Vol. 201, 77-82 (1979). - 6. M. K. Hu, IRE Trans. Inform. Theory IT-8, 179-187 (1962). - 7. W. T. Maloney, Appl. Opt. <u>10</u>, 2127-2131 (1971). - 8. K. G. Leib, R. A. Bondurant, S. Hsiao, R. Wohler, and R. Herold, Appl. Opt. 17, 2892-2899 (1978). - 9. J. D. Armitage and A. W. Lohmann, Appl. Opt. <u>4</u>, 461-467 (1965); see also A. Vander Lugt and E. N. Leith, Annals New York Acad. Sci. 157, 99-110 (1969). - 10. J. Upatnieks, B. D. Guenther, and C. R. Christensen, "Real-Time Correlation for Missile Terminal Guidance," US Army Missile Command, Technical Report H-78-5 (1978). - 11. A. W. Lohmann, Appl. Opt. 7, 561-563 (1968). - 12. O. I. Potaturkin, Appl. Opt. 18, 4203-4205 (1979). - 13. A. W. Lohmann and H. W. Werlich, Appl. Opt. 10, 670-672 (1971). - J. Grinberg, W. P. Bleha, P. O. Braatz, K. Chow, D. H. Close, A. D. Jacobson, M. J. Little, N. Massetti, R. J. Murphy, J. G. Nash, and M. Waldner, Proceedings SPIE 128, 253-266 (1977). ### DISTRIBUTION | Commander | No. of
Copies | |---|------------------| | US Army Research Office
ATTN: DRXRO-PH, Dr. R. Lontz | | | P. O. Box 12211 | | | Research Triangle Park, NC 27709 | 5 | | US Army Research and Standardization Group (Europe) ATTN: DRXSN-E-RX/LTC D. R. Reinhard | | | Box 65
FPO New York 09510 | 1 | | Commander | | | US Army Materiel Development and Readiness Command | | | ATTN: Dr. James Bender | 1 | | Dr. Gordon Bushey
5001 Eisenhower Avenue | 1 | | Alexandria, VA 22333 | | | Headquarters, Department of the Army | | | Office of the DCS for Research, Development & Acquisition ATTN: DAMA-ARZ | 1 | | Room 3A474, The Pentagon | | | Washington, DC 20301 | | | OUSDR&E | 1 | | Room 3D1079, the Pentagon | 1 | | Washington, DC 20301 | | | Director | | | Defense Advanced Research Projects Agency
1400 Wilson Boulevard | | | Arlington, VA 22209 | 1 | | OUSDR&E | | | ATTN: Dr. G. Gamota | | | Deputy Assistant for Research (Research in Advanced Technology) | 1 | | Room 3D1067, the Pentagon
Washington, DC 20301 | | | Director of Defense Research and Engineering | | | Engineering Technology | | | Washington, DC 20301 | 2 | | Director | | | Director Defense Advanced Research Projects Agency/STO | | | ATTN: Commander T. F. Wiener | 1 | | D. W. Walsh | 1 | | 1400 Wilson Boulevard | | | Arlington, VA 22209 | | | US Army Aviation Systems Command 12th and Spruce Streets St. Louis, MO 63166 | 1 | |---|-------------| | Director US Army Air Mobility Research & Development Laboratory Ames Research Center Moffett Field, CA 94035 | 1 | | Commander US Army Electronics Research and Development Command ATTN: DRSEL-TL-T, Dr. Jacobs DELEW-E, Henry E. Sonntag Fort Monmouth, NJ 07703 | 1 | | Director US Army Night Vision Laboratory ATTN: John Johnson John Deline Peter VanAtta Fort Belvoir, VA 22060 | 1
1
1 | | Commander US Army Picatinny Arsenal Dover, NJ 07801 | 1 | | Commander US Army Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783 | 1 | | Commander US Army Foreign Science and Technology Center ATTN: W. S. Alcott Federal Office Building 220 7th Street, NE Charlottesville, VA 22901 | 1 | | Commander US Army Training and Doctrine Command Fort Monroe, VA 22351 | 1 | | Director Ballistic Missile Defense Advanced Technology Center ATTN: ATC-D ATC-0 ATC-R ATC-T P. O. Box 1500 Huntsville, AL 35808 | 1
1
1 | | Commander US Naval Air Systems Command Missile Guidance and Control Branch Washington, DC 20360 | 1 | |---|-----------------------| | Chief of Naval Research
Department of the Navy
Washington, DC 20301 | 1 | | Commander
US Naval Air Development Center
Warminster, PA 18974 | 1 | | Commander US Naval Ocean Systems Center Code 6003 Dr. Harper Whitehouse San Diego, CA 92152 | 1 | | Director Naval Research Laboratory ATTN: Dave Ringwolt Code 5570, T. Gialborinzi Washington, DC 20390 | 1 | | Commander Rome Air Development Center US Air Force ATTN: James Wasielewski, IRRC Griffiss Air Force Base, NY 13440 | 1 | | Commander US Air Force, AFOSR/NE ATTN: Dr. J. A. Neff Building 410 Bolling Air Force Base Washington, DC 20332 | 1 | | Commander US Air Force Avionics Laboratory ATTN: D. Rees W. Schoonover Dr. E. Champaign Dr. J. Ryles Gale Urban David L. Flannery | 1
1
1
1
1 | | Wright Patterson Air Force Base, OH 45433 Commander | _ | | AFATL/LMT ATTN: Charles Warren Eglin Air Force Base, FL 32544 | 1 | | Environmental Research Institute of Michigan Radar and Optics Division ATTN: Dr. A. Kozma Dr. C. C. Aleksoff Juris Upatnieks P. O. Box 618 Ann Arbor, MI 41807 | 1
1
1 | |--|-------------| | IIT Research Institute ATTN: GACIAC 10 West 35th Street Chicago, IL 60616 | 1 | | Dr. J. G. Castle
9801 San Gabriel, NE
Albuquerque, NM 87111 | 1 | | Dr. Vincent J. Corcoran
2034 Freedom Lane
Falls Church, VA 22043 | 1 | | Optical Science Consultants
ATTN: Dr. D. L. Fried
P. O. Box 388
Yorba Linda, CA 92686 | 1 | | Commander Center for Naval Analyses ATTN: Document Control 1401 Wilson Boulevard Arlington, VA 22209 | 1 | | Raytheon Company
ATTN: A. V. Jelalian
528 Boston Post Road
Sudbury, MA 01776 | 1 | | Dr. J. W. Goodman Information Systems Laboratory Department of Electrical Engineering Stanford University Stanford, CA 94305 | 1 | | Eric G. Johnson, Jr. National Bureau of Standards 325 S. Broadway Boulder, CO 80302 | 1 | | M. Vanderlind Battelle Columbus Labs 505 Ring Ave Columbus, OH 43201 | 1 | | Dr. Nicholas George
The Institute of Optics
University of Rochester
Rochester, NY 14027 | 1 | |---|---| | Naval Avionics Facility
Indianapolis, IN 46218 | 1 | | F. B. Rotz
Harris Corporation
P. O. Box 37
Melbourne, FL 32901 | 1 | | Robert L. Kurtz TAI Corporation 8302 Whitesburg Dr., SE Huntsville, AL 35802 | 1 | | J. R. Vyce
Itek Corporation
10 Maguire Road
Lexington, MA 02173 | 1 | | Dr. David Cassasent
Carnegie Mellon University
Hamerschage Hall, Room 106
Pittsburg, PA 15213 | 1 | | David M. Karnes McDonnell Douglas Astronautics 5301 Boisa Ave. Huntington Beach, CA 92647 | 1 | | Professor Anil K. Jain Department of Electrical Engineering University of California, Davis Davis, CA 95616 | 1 | | Gerald B. Brandt Westinghouse Electric Corporation Research and Development Center Pittsburg, PA 15235 | 1 | | K. G. Leib Research Department Grumman Aerospace Corporation Bethpage, NY 11714 | 1 | | Terry Turpin Department of Defense 9800 Savage Road Fort George G. Meade, MD 20755 | 1 | | Dr. Stuart A. Collins Electrical Engineering Department Ohio State University 1320 Kennear Road | | |--|------------------| | Columbus, OH 43212 | 1 | | Mike Scarborough, MS-19
Teledyne Brown Engineering
Cummings Research Park
Huntsville, AL 35807 | 1 | | Commander
AFEL | | | Hanscom Air Force Base, MD 01731 | I | | Dr. Arthur N. Chester Dr. Donald H. Close Thomas R. O'Meara Dr. Wilfried O. Eckhardt Hughes Research Laboratories 3011 Malibu Canyon Road Malibu, CA 90265 | 1
1
1 | | H. J. Caulfield
Aerodyne Research, Inc.
Bedford Research Park
Crosby Drive
Bedford, MA 01730 | 1 | | TRW Defense and Space Systems Group One Space Park ATTN: Dr. Peter O. Clark Redondo Beach, CA 90278 | 1 | | US Army Materiel Systems Analysis Activity ATTN: DRXSY-MP | | | Aberdeen Proving Ground, MD 21005 | 1 | | DRCPM-PE-E, John Pettitt -PE | 1 | | DRSMI-LP, Mr. Voigt -RN, Jerry Hagood -RE, W. Pittman L. Minor -RD -RG | 1
1
1
3 | | -RG, J. A. McLean
-O
-Y | 1
1
1 | | -RR, Dr. R. L. Hartman Dr. J. S. Bennett Dr. C. R. Christensen | 1
1
200 | | | (Record Copy) | 1 | |------|------------------|----| | | (Reference copy) | 1 | | -RPR | | 15 | | -R | | 1 | # DATE FILME